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The first formulation of the definition equation of completely-G-invariant distance exten- 
sions from the action of a compact group G onto a metric space (E, d) is reminded. A more gen- 
eral equation (E) is then consistently associated to a group G mapped by a numerical function 
m and acting on a metric space (E, d) mapped by another continuous numerical function. A 
solution of (E) is called a"G-weighted distance extension of d". A differential form of the equa- 
tion is derived in order to provide a definition of a "G-weighted metric" ds 2 = (da/7) 2 from a 
non-uniform map of an Euclidean space: 7 = #G when G is a finite group, but ds a is also defined 
by continuity when G is an infinite compact group (3' = c~). 

1. Introduction 

Starting f rom an algebraic analysis of  chemical pairing equilibria 2 M N  

~- M M  + N N ,  a mathemat ical  model has been devised to show that,  under  speci- 
fied circumstances, the constant  

K = [ M M ] .  INN] 

[MN] 2 

is always greater than 1 and equals 1 if and only if the chemical moieties M and N 
are identical [1]. In the model, M and N are represented by vectors of  a space E 
whose dimension equals the number  of  atomic sites in the common skeleton of  M 
and N. A somewhat  abstract derivation has given rise to intriguing results related 
to the theory of  completely G-invariant distances, where G is a compact  group act- 
ing on an Euclidean space (the very first meaning of  this action resides in the sym- 
met ry  of  the molecular skeleton of  M and N): a general equat ion has been proposed 
to define a completely G-invariant extension of  the Euclidean distance on E [2]. 
The theoretical relevance of  this equation has been examined, and its differential 
resolution has been tackled. On the other hand, a more general equat ion has been 

© J.C. Baltzer AG, Science Publishers 



236 R. Chauvin / Chemical algebra. V 

constructed from non-necessarily Euclidean metric spaces: the non-Euclidean 
Hausdorff distance of R n was considered in view of geometrical applications, 
namely the quantification of the chirality of geometrical figures [3]. In this report, a 
further generalization is envisaged for metric spaces and groups additionally 
endowed with numerical maps. 

2. Reminder :  definit ion of completely G-invariant distance extensions 

Given a metric space (E, d) endowed with an isometric action of a compact group 
G, a general equation (E) defining a completely-G-invariant distance extension Dp 
of d from a"discriminating pairing product Kp" [4] has been devised [2]. The defini- 
tion equation has been constructed in order to meet the following requirements: 

( i) G-invariance requirements 
(a) Dp is completely G-invariant, i.e. the functional equation linking Kp and Dp pre- 

serves the complete G-invariance ofKp. 
(b) Vu~E ,  Vg~G, Dp(u, gu) = O. 

(ii) Extension requirements 
(a) Dp is an extension of the metric distance d: if u0 is invariant to all the operations 

of G, then: Vu E E, Vg E G, Dp (u, u0) = d(gu, u0) = d(u, u0). 
(b) When p--* oo, Dp tends to the standard completely G-invariant distance Doo 

[5]. 
(c) When p ~ O, Dp tends to the "smooth" completely G-invariant distance Do 

[6]. 

( iii) D&tance properties on E/ G 
(a) V(u, v) E E 2, 0 ~ Dp (u, v). 
(b) V(u, v) E E 2, Dp (u, v) = 0 ~ 3h ~ G, v = gu (converse of(ib)). 
(c) V(u, v, w) ~E s, Dp(u, w) ~< Dp (u, v) + Dp(v, w). 

Two propositions are now recalled. 

THEOREM 1 
Let G be a finite or compact group acting on a metric space (E, d) and preserving 

the distance (V(u, v) ~ E 2, Vg ~ G, d(gu, gv) = d(u, v)). For p > 0, let Kp be a discri- 
minating pairing product on (E, d; G) (i.e. Kp 1> 1, and Kp(u, v) = 1 if and only if 
v = gu for some operation g of G). If E is an Euclidean vector space, consider the 
equation of an unknown function Dp: E x E --* R+: 

• v ) )  = 
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with 

ffff [p (gu-hvlku-/v) ~u,v(x) = e x p  Ilgu- hvll-llku-/vii 
6 ~ 

x 2] dgdhdkdl, 

Kp p(u,v) = fcexp[-P(gulu)]  dg. f exp[-P (gvlv)] dg 

(fcexp[-P(gu'v)]dg) 2 

Then, eq. (E) has a single solution Dp. Furthermore, Dp fulfills the aforementioned 
consistency requirements (i), (ii) and (iii), except, perhaps, the triangular inequality 
(iiic). 

This formulation has been generalized for any metric space [3]. 

THEOREM 2 
Let G be a finite or compact group acting on a metric space (E, d) and preserving 

the distance. Forp > 0, let Kp be a discriminating pairing product on (E, d; G), con- 
sider the equation of an unknown function Dp: E x E --~ R+: 

#u,v(Dp(u, v)) = [Kp(u, v)] p (E) 

with 

Kp p(u'v) _ f a e x p [ - P  d2(gu, u)] dg. fa exp[-P  d2(gv, v)] dg 

(faexPI-Pd2(gu, v)] dg) 2 

fff [ cg,.,k(u,v) #u,v(X) = exp PCm(u,v)f(P)"J dgdhdk, 
G3 

where 
d2(gu, v) + d2(ku, hv) - d2(gu, ku) - d2(v, hv) 

• Cg,h,k(U, V) = 2d(gu ,  h v ) .  d (ku ,  v) ' 

• Cm(u, v) = max{Cg,h,g(u, v); (g, h, k) e G3}(>~ 1), 

• f(p) is some regular function eventually depending on 
f(0) = 0andf(oo) = 1 (e.g.f(p) = ~o/(p -po)]2,po ~ 0). 

Then, (E) has a single solution Dp which fulfils the aforementioned requirements, 

(u, v) satisfying 
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except, perhaps, the triangular inequality (iv). If (E, d) is an Euclidean vector space, 
then 

(gu - h v l k u  - v) -_ c o s ( g u  - hv, ku - v) ~< C m ( u ,  v )  = 1. Cg,h,k(U, v)  = l ieu  - hv l l . l lku  - vii 

In this case, the definition of Dp does not require the full dermination off(p). 

3. A more general formulat ion:  definition of  G-weighted distance extensions 

A definition equation (E) of a distance on E/G is associated to any given metric 
space E endowed with an operation of some compact group G. However, a more 
general equation can be naturally associated to any continuous numerical function 
defined on E 2 x G, even if it is not uniform on E. This extension boils down to weigh 
the integrands taking place in (E) in the following way: 

• u , v ( D p ( u ,  v ) )  = [K,,(u,  v)]  p (~:) 

with 

K~(u,v) = L #u,v(g) e x p [ - ~  d2(gu, u)] dg. L #u'v(g) e x p [ - P  d2(gv' v)] dg 

L #u'v(g)exp [ - P  d2(gu' v)] de. L/Zu'v(g) exp f -Pd2(gv '  u)] dg 

~Su,v ( x )  = 

# u , v ( g ) # u , v ( h ) # u , v ( k ) # u , v ( l ) e x p  Cm(u, v/(p) x 2 agdhakal 
G 4 

where (u, v; g) -* #u,v(g) is a continuous numerical function on E 2 x G such that 

~u,v ~ ~v,u • 

Remark 1 
When u = v, the extended equation (E) is trivially verified for Dp(u, u) --- 0. 

Remark 2 
The latter symmetry condition in u and v garantees the symmetry of the solution, 

i.e.: Dp(u ,v )=  Dp(v,u). The denominator of KpP(u,v) is no longer a squared 
integral: indeed, Kp must be symmetric (Kp(u,v)=Kp(v,u)) .  However, if 
#u,v (g) = #u,v(g-l ) for any g ~ G, then the denominator is a squared integral. 
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Remark 3 
The early formulation assumes that the integrals occurring in Kp and ~,v(x)  

stretch over the whole group G. Nevertheless, for any points u and v of E, these inte- 
grals might be naturally restricted to any fuzzy subset A_ of G, and #u,v can be inter- 
preted as the membership function of A, whereas g--~ exp[-pd(gu, u)/x/2] and 
g ~ exp[-pd(gu, v)/x/2] were interpreted as characteristic functions of fuzzy sub- 
groups and conjugacy links respectively [7]. 

Remark 4: Form of  the weighting function/.z~,v 
The group G is supposed to occur only through its action on E. It is therefore sug- 

gested that ~u,v is actually a function/~ of the two arguments gu and gv, time a func- 
tion m of the sole operation g ~ G, i.e.: #u,v (g) = #(gu, gv) • re(g). 

Basically, eq. (E) aims at proposing a quantitative (metric) significance to the 
qualitative connection exerted by G between points of E. Apart from this equation 
and the starting distance d, any two points of E are not supposed to be otherwise 
connected. Thus,/~u,v has not to represent any coupling between u and v. In other 
words, the symmetric map #(x, y) o f E  × E is a function of independent arguments 
7r(x) and 7r(y), where 7r is a numerical map of E. The simplest symmetric form is hen- 
ceforth retained: 

#u,v(g) = #(gu, gv)- m(g) = 7r(gu)Tr(gv). re(g). 

In conclusion, an equation (E) is consistently constructed from a given metric space 
E mapped by a continuous numerical function 7r and endowed by the action of  a given 
group G idependently mapped by a function m. 

Within the framework of the local interpretation of (E), i.e. for v = u + du, 
most of the integrand factors #u,v (g) = #u,u+au (g) can be simply replaced in (E) by 
#u,u(g) = ~ ( g u )  • re(g), where we have put: du = 0. The corresponding solution is 
expected to define a metric, and is still denoted D2(u, u + du) = d ~ .  However, 
not all the factors #u,u+au(g) can be consistently replaced by/~,~(g): this point is 
detailed in the last section, where an improved formulation of the local equation 
(E) is derived. 

Example 
The real axis R is considered as an Euclidean vector space. The orthogonal group 

reduces to G = {e, a}. It is supposed that the operations of G occur with equal 
weights, namely: re(g) = 1. In order to define ~, a single free parameter, denoted a, 
is needed: 

e_a _ t~(o'x,o'y) 7r(crx)Tr(cry) 
#(x,y) 7r(x)Tr(y) 

When # is constant, a comprehensive study has been carried out [2,8]. An analogous 
technical calculation, leads to 
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G,,(Dp(X,y))  - 
1 

(1 + e-~) 2 {(1 + e-2~)exp~vD~(x,y)] + 2e -~ exp[-pDp(x,y)]} 

cosh(px a + a/2) cosh(py 2 + a/2) 
Kp(x,y) = cosh2(pxy + a/2) 

The resolution of the associated equation (E) gives 

Dp(X 'Y)=I l ln l  cOsh2(a/2)Kp+~/cOsh4(a/2)K2pp-cOshacOsh a 

When a = 0, the result of ref. [2] is reproduced. Notice that ifa = 0, then Dp(x, O) 
= [xl,butifa ¢ O, thenDp(x,O) ~ Ix[. 

The differential form of (E) corresponds to the case y = x + dx, and gives 

g'x,x+clx(do~)=l +p tanh2 (2) do'2 

{ ( a) Kp(x ,x+dx)=l+p  tanh px 2+~  + 

where a is now defined for dx = O, by 

Px2 } clx 2 ' cosh ( x  

e- a _ #(crx, o'x) _ 7r2(crx) 
U(x,x) ~ ( x )  

Thus, 

a J -  
1 {  a 

tanh2(2 ) tanh( px2 +~)  + 
Px2 a } dx2" 

c°sh2 (P x2 +~)  

For a = 0, do a is not defined by this process. This has been previously outlined, 
but a formal expression for dcr 4 could be derived [8]. 

In an attempt to regard do a as a linear element of a curve "y = Ya (x)" in R 2, we 
seek for a functionya such that dcr = dsx = V/1 + y'(x) dx, i.e.: 

j ~ ( x ) = l  1 { a 
tanh2(2 ) tanh( px2 +~) + 

pX2 } -- 

cosh (   . 

The equation of the curve passing by zero is thus: 
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 oXi ( . ya(X) = tanhli(1) tanh(pt  I +~)-~ 
Pt2 ~ - 1 dt. 

c°sh2 ( p p  + i )  

It should be emphasized that the scalar "a" may depend on x (and on t in the 
integral). 

4. Discussion 

In a speculative interpretation, the function 7r can be regarded as a characteristic 
of the symmetry of a space endowed with a"topography",  whereas the exponential 
integrand factors (membership functions of fuzzy subgroups or conjugacy links of 
G) [7] characterize the symmetry of a reference coordinate space (e.g. E = R n) qua- 
litatively endowed with a set of"allowed motions" (represented by G). The coordi- 
nate space just maps the "topographical space" with a distorted geometry (e.g. a 
Riemanian manifold Vn). In view of such a representation, further studies will focus 
on Euclidean spaces where Cm(u, v) = 1 0C(p) has not to be determined). 

5. Precision on the differential form of  (E) for infinite compact  group G 

The left-hand term of (E) has been first defined as an integral over G 4. However, 
one now carefully analyzes the case of an infinite compact group G. Let F be the 
subset of G 4 collecting the operations (g, h, k, l) such that Cg,h,k,t(u, u) is a priori 

,, o ,,~ Since Ga-F is negligeable in G 4, the differential defined (i.e. Cg,h,k,l(u, u) 7~ 0 ~" 
form can be written down (for an Euclidean space E: Cm(u, v) = 1): 

~u,u+du(dcr) ~[ll/llZu,u(g)IXu,u(h)Izu,u(k)#u,u(l)[ 1 +PCg,h,k,l(U,U) dO'2 

G 4 

+ p C~,h,k,t(U,u)do'4/2 +. . . ]dgdhdkdl  

= 1 +pA(u)do ~ + . . .  d~r 4 -k. . .  , 

where 
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A(u) = 

,,,.- .~,, ,.~- . - , ,  (gu - hu [ ku  - lu) , ,, 
ii--~ -~ -h--~ ll : l-(-~( -_- -~-~H l( ag an dk  dl  

G 4 

/ j f  f de dh ak dt 
G4 

The coefficient p A  (u) of  d ~  vanishes (given any value of  the integrand, the permu-  
tat ion of  g and h simply results in the change of  the sign of  the integrand). There- 
fore, no definition of  do 2 is furnished. Instead, we get a formal definition of  dcr 4, 
and this state of  affairs has been partially discussed in the case #~,u = 1. In order  to 
get a relevant definition of  a linear element ds 2 related to do -z, the above formal  deri- 
vation is not  corrected on the basis the analysis of  the finite case. 

Let us consider the case of  a finite group G, with a cardinality 7 -- #(G),  acting 
isometrically on an Euclidean space. 

For  g ~ k and k ~ l, the coefficient Cg,h,k,l(U, U) is a priori  different f rom ,,0_,, 0 ' 
and it can be identified with the corresponding term Cg,h,k,t(u, u + du) in the upper 
integral Of#u,u+au (dcr). This situation is refered to as the case "0":  

"0"  - when g ¢ k and k # l(74 - 23 '3 - 32 terms among the 74 terms in G4). 

On the other  hand, there are three cases in which Cg,h,k,t(u, u) is apr ior i  not  defined 
(i.e. Cg,h,k,l(U, U) "0"~. 

"1"  - when g = h and k ¢ / ( 7  3 terms among the .),4 terms in G4), 

"2"  - when g ¢ h and k = l(3"3 terms among the 3,4 terms in G4),  

"3"  - when g = h and k = l(7 2 terms among the 3 '4 terms in G4). 

In these cases, it is necessary to consider du  ¢ 0 and turn back to the complete  
expression Cg,h,k,l(U, U Jr- du) ~ Cg,h,k,l(U , U). 

Each situation 0, 1, 2 or 3 corresponds to a set of  four-fold operations (g, h, k, l) 
respectively denoted Go, G1, G2 and G3. 

Since G is finite, the upper or the lower integral occurring in ~bu,u+du (dcr) is actu- 
ally an ari thmetic mean  and can be replaced by a sum over G4: this sum is split 
into four  sums over the Gi's, each of  them being in turn expressed as mean  inte- 
grals: 

1 l{a~0 } 
Gl G2 G3 
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1{ / i S / }  = ~ ( , ) , 4  2~3 ,,/2) . . .  +,),3 . . .  +,),3 . . .  _4_~2 . . .  

Go Gi G2 G3 

( 1)/ l / .1S l i  
= 1 ")/ 42 . . . +  ~ . . . + ~  . . . +  ~ . . . .  

Go Gi G2 G3 

Therefore, the left-hand side ofeq. (E) reads 

~,,,u+du(d~) 

fa4 #u,u(g)#u,u(h)l~u,u(k)#u,u(l) exp[pCg,h,k,t(u, u+du)do  ~] d(g, h, k, l) 

fa, #u,u(g)IZu,u(h)#u,u(k)#u,u(l)[1 + pCg,h,k,l(u, u+du)do  2] d(g,h,k ,  l) 

~ l + p  

where 

1 2 
7 

1 1 + 1  

do ~ , 

* dNo = #u,u(g)#u,u(h)#u,u(k)#u,u (l) Cg,h,k,l(u, u) dg dh dk dl (g # h, k # l), 

* dWl = #2,u(g)#u,u(k)#u,u(l)Cg,g,k,l(u, u + du) dgdkd l  (g = h, k # l: formally, dg 
here represents a measure "induced" by the "diagonal measure dg 2'' of G 2 onto 
G1). 

* dN2 = #u,u(g)#u,u(h)#2,u(k)Cg,h,Lk(U,u+au)agdhdk (g # h; k = l; formally, 
dk here represents a measure "induced" by the diagonal measure dk 2 of G 2 onto 
G2). 

* dN3 2 2 = #u,u(g)/~u,u(k)Cg~,k,k(U,U + du)dgdk  (g = h; k = l; dg and dk are for- 
mally defined as in dN1 and dN2). 

All but one of the four upper integrals vanish. Indeed, 

( g u - h u l k u - / u )  

Go G "4, g#h,k#l 

@ dh dk  dl = O , 
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for the exchange of  k and l (or g and h) in any value of  the integrand affords the 
opposite value of the integrand. 

/ fff o -  o , -  - - - , , , , , - - - ( g u - g ( u +  d u ) [ k u - / u )  • dN1 = /z2u(g)/z.,.(k)/z.,.(l)HUd2;-G2:2---~ll.i-G;T_-lull agdkdl=O, 
GI G3 

/ /  (gdu[ku - lu) dg 2 dk dl = 0 = #2,u(g)#u,u(k)#u,u(l ) H-~uH.[~-- -l-~u H 
G3 

for the exchange of k and l in any value of the integrand affords the opposite value 
of  the integrand. Likewise, fa~ dN2 = O. 

• I", J/#:u(g)#2uu(k) ll~-g-~Va--~)ll I~-'---W~(" V~llIgu- gIu + au)l , - kIu + au)) dg dk 
G3 G2 

: I f  #2,~(g)#2, ~(k) (gdulkau) 
Ildul[  2 

G2 
where 

dg d k -  IldWll= ~0 
i ldul l  2 ' 

4do. 2 ~ 1 +pB2(u, du) 

where 

B2(u, du) = 1 HdUH 2 

[ fa#.,u(g) dg] 411du[12 " 

As it has already been underl ined [8], it is clear that when 7 = o0, this derivation 
does not  afford a definition of  do z. Nevertheless, it still defines the quantity: 
ds = do'/../, and the definition reads 

~u,u+au(Tds) ~ 1 +pB2(u ,  du) ds 2 . 

Under  this form (with #u.u+au(Tds) = Kp(u, u + du)), it furnishes a definition of  
ds 2 whatever  is the finite or infinite group G considered. 

The following definition ofdp and ds are therefore suggested: 

dU = f #2,u(g)(gdu )dg. 
G 

In conclusion, ifG is afinite group (1 .G< 7 < oo and dg = 1/7): 

1 
7 --5 JG3 dN3 

~u,u+du(dCr) ,-~ 1 + p 
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"rdp(u, v) = DAu, v), 

"yds = do. = Dp (u, u + d u ) ,  

where ~, = #G.  

When G is a finite group, the results hitherto established for Dp and do" can be 
easily writ ten down in terms of  ds and dp, which become distance extensions of  the 
start ing distance d/'~ instead of  the equivalent distance d. This definition also 
brings a rigorous formulat ion of  the singularity of  do ~ on the unit representat ion 
space Vl contained in a larger representat ion space V = V1 ~ V2 of  the group 
82 ~ {e, o"} (where: Vu E V2, eu = u, au  = - u ) .  

When  G is an infinite group, (E) is still a definition of  ds 2. However,  Dp can still 
be finite (e.g. i fG is compact)  and no definition ofdp is furnished. 

If  #2u(g ) = 1 for any operation g, then U = fa(gdu) dg: if there exists some 
operat ion go such that  godu = - d u ,  then d U  = 0, and no definition of  ds 2 is avail- 
able. The situation formerly discussed for the infinite group G = Ca in R 2 fulfills 
the latter condit ion and thus, a formal calculation of  do  n only remains possible 
[8]. 

I fB(u ,  du)  does not  vary with du, and ifB(u,  du)  ~ 0, then the equat ion provides 
a definition of  a metric ds 2 in the classical sense of  Riemannian  manifolds. This 
problem will be discussed later. 

6. C o n c l u s i o n  

The f ramework  of  the definition of  completely G-invariant distance extensions 
is now generalized to the more  general definition of  G-weighted distance exten- 
sions. The formulat ion of  the local version affording a definition of  G-weighted 
metrics has been clarified. In particular,  the borderline case of  infinite compact  
groups is r igorously treated by the introduct ion of  the related metric ds 2 = do-2/72, 
where -), = #G. Everything seems to be at our  disposal to search (at least formally) 
for an eventual connection with tools of  physical mathematics .  This challenge will 
come under  a speculative interpretat ion of  the wheighting symmetry  function/Zu,v 
which is to be determined. This is under taken  in the next paper. 
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