Chemical algebra. V: G-weighted distance extensions and metrics

Remi Chauvin

Laboratoire de Chimie de Coordination du C.N.R.S., Unité 8241, liée par convention à l'Université Paul Sabatier, 205 Route de Narbonne, 31 077 Toulouse Cedex, France

Received 16 September 1994

The first formulation of the definition equation of completely-G-invariant distance extensions from the action of a compact group G onto a metric space (E, d) is reminded. A more general equation (\mathbb{E}) is then consistently associated to a group G mapped by a numerical function m and acting on a metric space (E, d) mapped by another continuous numerical function. A solution of (\mathbb{E}) is called a "G-weighted distance extension of d". A differential form of the equation is derived in order to provide a definition of a "G-weighted metric" $ds^2 = (d\sigma/\gamma)^2$ from a non-uniform map of an Euclidean space: $\gamma = \#G$ when G is a finite group, but ds^2 is also defined by continuity when G is an infinite compact group $(\gamma = \infty)$.

1. Introduction

Starting from an algebraic analysis of chemical pairing equilibria 2 $MN \Rightarrow MM + NN$, a mathematical model has been devised to show that, under specified circumstances, the constant

$$K = \frac{[MM] \cdot [NN]}{[MN]^2}$$

is always greater than 1 and equals 1 if and only if the chemical moieties M and N are identical [1]. In the model, M and N are represented by vectors of a space E whose dimension equals the number of atomic sites in the common skeleton of M and N. A somewhat abstract derivation has given rise to intriguing results related to the theory of completely G-invariant distances, where G is a compact group acting on an Euclidean space (the very first meaning of this action resides in the symmetry of the molecular skeleton of M and N): a general equation has been proposed to define a completely G-invariant extension of the Euclidean distance on E [2]. The theoretical relevance of this equation has been examined, and its differential resolution has been tackled. On the other hand, a more general equation has been

constructed from non-necessarily Euclidean metric spaces: the non-Euclidean Hausdorff distance of \mathbb{R}^n was considered in view of geometrical applications, namely the quantification of the chirality of geometrical figures [3]. In this report, a further generalization is envisaged for metric spaces and groups additionally endowed with numerical maps.

2. Reminder: definition of completely G-invariant distance extensions

Given a metric space (E, d) endowed with an isometric action of a compact group G, a general equation (\mathbb{E}) defining a completely-G-invariant distance extension D_p of d from a "discriminating pairing product K_p " [4] has been devised [2]. The definition equation has been constructed in order to meet the following requirements:

(i) G-invariance requirements

- (a) D_p is completely G-invariant, i.e. the functional equation linking K_p and D_p preserves the complete G-invariance of K_p .
- (b) $\forall \mathbf{u} \in E, \forall g \in G, D_p(\mathbf{u}, g\mathbf{u}) = 0.$
- (ii) Extension requirements
- (a) D_p is an extension of the metric distance d: if u_0 is invariant to all the operations of G, then: $\forall \mathbf{u} \in E, \forall g \in G, D_p(\mathbf{u}, \mathbf{u}_0) = d(g\mathbf{u}, \mathbf{u}_0) = d(\mathbf{u}, \mathbf{u}_0)$.
- (b) When $p \rightarrow \infty$, D_p tends to the standard completely G-invariant distance D_{∞} [5].
- (c) When p→0, D_p tends to the "smooth" completely G-invariant distance D₀
 [6].

(iii) Distance properties on E/G

- (a) \forall (**u**, **v**) $\in E^{\overline{2}}, 0 \leq D_p$ (**u**, **v**).
- (b) $\forall (\mathbf{u}, \mathbf{v}) \in E^2$, $D_p(\mathbf{u}, \mathbf{v}) = 0 \Rightarrow \exists h \in G, \mathbf{v} = g\mathbf{u}$ (converse of (ib)).
- (c) $\forall (\mathbf{u}, \mathbf{v}, \mathbf{w}) \in E^3, D_p(\mathbf{u}, \mathbf{w}) \leq D_p(\mathbf{u}, \mathbf{v}) + D_p(\mathbf{v}, \mathbf{w}).$

Two propositions are now recalled.

THEOREM 1

Let G be a finite or compact group acting on a metric space (E, d) and preserving the distance $(\forall (\mathbf{u}, \mathbf{v}) \in E^2, \forall g \in G, d(g\mathbf{u}, g\mathbf{v}) = d(\mathbf{u}, \mathbf{v}))$. For p > 0, let K_p be a discriminating pairing product on (E, d; G) (i.e. $K_p \ge 1$, and $K_p(\mathbf{u}, \mathbf{v}) = 1$ if and only if $\mathbf{v} = g\mathbf{u}$ for some operation g of G). If E is an Euclidean vector space, consider the equation of an unknown function $D_p: E \times E \rightarrow R_+$:

$$\Phi_{\mathbf{u},\mathbf{v}}(D_p(\mathbf{u},\mathbf{v})) = [K_p(\mathbf{u},\mathbf{v})]^p \tag{E}$$

with

$$\begin{split} \varPhi_{\mathbf{u},\mathbf{v}}(x) &= \iiint_{G^4} \exp\left[\frac{p}{2} \frac{(g\mathbf{u} - h\mathbf{v}|k\mathbf{u} - l\mathbf{v})}{\|g\mathbf{u} - h\mathbf{v}\| \cdot \|k\mathbf{u} - l\mathbf{v}\|} x^2\right] dg \, dh \, dk \, dl \,, \\ K_p^p(\mathbf{u},\mathbf{v}) &= \frac{\int_G \exp\left[-\frac{p}{2}(g\mathbf{u}|\mathbf{u})\right] dg \cdot \int_G \exp\left[-\frac{p}{2}(g\mathbf{v}|\mathbf{v})\right] dg}{\left(\int_G \exp\left[-\frac{p}{2}(g\mathbf{u}|\mathbf{v})\right] dg\right)^2} \,. \end{split}$$

Then, eq. (\mathbb{E}) has a single solution D_p . Furthermore, D_p fulfills the aforementioned consistency requirements (i), (ii) and (iii), except, perhaps, the triangular inequality (iiic).

This formulation has been generalized for any metric space [3].

THEOREM 2

Let G be a finite or compact group acting on a metric space (E, d) and preserving the distance. For p > 0, let K_p be a discriminating pairing product on (E, d; G), consider the equation of an unknown function $D_p: E \times E \rightarrow R_+$:

$$\Phi_{\mathbf{u},\mathbf{v}}(D_{\rho}(\mathbf{u},\mathbf{v})) = [K_{\rho}(\mathbf{u},\mathbf{v})]^{p}$$
(E)

,

with

$$K_p^p(\mathbf{u}, \mathbf{v}) = \frac{\int_G \exp\left[-\frac{p}{2} d^2(g\mathbf{u}, \mathbf{u})\right] dg \cdot \int_G \exp\left[-\frac{p}{2} d^2(g\mathbf{v}, \mathbf{v})\right] dg}{\left(\int_G \exp\left[-\frac{p}{2} d^2(g\mathbf{u}, \mathbf{v})\right] dg\right)^2}$$
$$\Phi_{\mathbf{u}, \mathbf{v}}(x) = \iint_{G^3} \int \exp\left[p \frac{C_{g,h,k}(\mathbf{u}, \mathbf{v})}{C_{\mathbf{m}}(\mathbf{u}, \mathbf{v})^{f(p)}} x^2\right] dg \, dh \, dk \,,$$

where

•
$$C_{g,h,k}(\mathbf{u},\mathbf{v}) = \frac{d^2(g\mathbf{u},\mathbf{v}) + d^2(k\mathbf{u},h\mathbf{v}) - d^2(g\mathbf{u},k\mathbf{u}) - d^2(\mathbf{v},h\mathbf{v})}{2d(g\mathbf{u},h\mathbf{v}) \cdot d(k\mathbf{u},\mathbf{v})}$$
,

- $C_{\mathbf{m}}(\mathbf{u},\mathbf{v}) = \max\{C_{g,h,k}(\mathbf{u},\mathbf{v}); (g,h,k) \in G^3\} (\geq 1),$
- f(p) is some regular function eventually depending on (\mathbf{u}, \mathbf{v}) satisfying f(0) = 0 and $f(\infty) = 1$ (e.g. $f(p) = [p/(p-p_0)]^2, p_0 \neq 0$).

Then, (\mathbb{E}) has a single solution D_p which fulfils the aforementioned requirements,

except, perhaps, the triangular inequality (iv). If (E, d) is an Euclidean vector space, then

$$C_{g,h,k}(\mathbf{u},\mathbf{v}) = \frac{(g\mathbf{u} - h\mathbf{v}|k\mathbf{u} - \mathbf{v})}{\|g\mathbf{u} - h\mathbf{v}\| \cdot \|k\mathbf{u} - \mathbf{v}\|} = \cos(g\mathbf{u} - h\mathbf{v}, k\mathbf{u} - \mathbf{v}) \leq C_{\mathbf{m}}(\mathbf{u}, \mathbf{v}) = 1.$$

In this case, the definition of D_p does not require the full dermination of f(p).

3. A more general formulation: definition of G-weighted distance extensions

A definition equation (\mathbb{E}) of a distance on E/G is associated to any given metric space E endowed with an operation of some compact group G. However, a more general equation can be naturally associated to any continuous numerical function defined on $E^2 \times G$, even if it is not uniform on E. This extension boils down to weigh the integrands taking place in (\mathbb{E}) in the following way:

$$\Phi_{\mathbf{u},\mathbf{v}}(D_p(\mathbf{u},\mathbf{v})) = [K_p(\mathbf{u},\mathbf{v})]^p \tag{E}$$

with

$$K_{p}^{p}(\mathbf{u},\mathbf{v}) = \frac{\int_{G} \mu_{\mathbf{u},\mathbf{v}}(g) \exp\left[-\frac{p}{2} d^{2}(g\mathbf{u},\mathbf{u})\right] dg \cdot \int_{G} \mu_{\mathbf{u},\mathbf{v}}(g) \exp\left[-\frac{p}{2} d^{2}(g\mathbf{v},\mathbf{v})\right] dg}{\int_{G} \mu_{\mathbf{u},\mathbf{v}}(g) \exp\left[-\frac{p}{2} d^{2}(g\mathbf{u},\mathbf{v})\right] dg \cdot \int_{G} \mu_{\mathbf{u},\mathbf{v}}(g) \exp\left[-\frac{p}{2} d^{2}(g\mathbf{v},\mathbf{u})\right] dg},$$

$$\Phi_{\mathbf{u},\mathbf{v}}(x) = \frac{\int \int \int \int \int \mu_{\mathbf{u},\mathbf{v}}(g) \mu_{\mathbf{u},\mathbf{v}}(h) \mu_{\mathbf{u},\mathbf{v}}(k) \mu_{\mathbf{u},\mathbf{v}}(l) \exp\left[p \frac{C_{g,h,k,l}(\mathbf{u},\mathbf{v})}{C_{\mathbf{m}}(\mathbf{u},\mathbf{v})^{f(p)}} x^{2}\right] dg dh dk dl}{\left[\int_{G^{4}} \mu_{\mathbf{u},\mathbf{v}}(g) dg\right]^{4}},$$

where $(\mathbf{u}, \mathbf{v}; g) \rightarrow \mu_{\mathbf{u}, \mathbf{v}}(g)$ is a continuous numerical function on $E^2 \times G$ such that

 $\mu_{\mathbf{u},\mathbf{v}} = \mu_{\mathbf{v},\mathbf{u}}$.

Remark 1

When $\mathbf{u} = \mathbf{v}$, the extended equation (\mathbb{E}) is trivially verified for $D_p(\mathbf{u}, \mathbf{u}) = 0$.

Remark 2

The latter symmetry condition in **u** and **v** garantees the symmetry of the solution, i.e.: $D_p(\mathbf{u}, \mathbf{v}) = D_p(\mathbf{v}, \mathbf{u})$. The denominator of $K_p^p(\mathbf{u}, \mathbf{v})$ is no longer a squared integral: indeed, K_p must be symmetric $(K_p(\mathbf{u}, \mathbf{v}) = K_p(\mathbf{v}, \mathbf{u}))$. However, if $\mu_{\mathbf{u},\mathbf{v}}(g) = \mu_{\mathbf{u},\mathbf{v}}(g^{-1})$ for any $g \in G$, then the denominator is a squared integral.

Remark 3

The early formulation assumes that the integrals occurring in K_p and $\Phi_{\mathbf{u},\mathbf{v}}(x)$ stretch over the whole group G. Nevertheless, for any points \mathbf{u} and \mathbf{v} of E, these integrals might be naturally restricted to any fuzzy subset \underline{A} of G, and $\mu_{\mathbf{u},\mathbf{v}}$ can be interpreted as the membership function of \underline{A} , whereas $g \rightarrow \exp[-pd(g\mathbf{u},\mathbf{u})/\sqrt{2}]$ and $g \rightarrow \exp[-pd(g\mathbf{u},\mathbf{v})/\sqrt{2}]$ were interpreted as characteristic functions of fuzzy subgroups and conjugacy links respectively [7].

Remark 4: Form of the weighting function $\mu_{u,v}$

The group G is supposed to occur only through its action on E. It is therefore suggested that $\mu_{\mathbf{u},\mathbf{v}}$ is actually a function μ of the two arguments $g\mathbf{u}$ and $g\mathbf{v}$, time a function m of the sole operation $g \in G$, i.e.: $\mu_{\mathbf{u},\mathbf{v}}(g) = \mu(g\mathbf{u},g\mathbf{v}) \cdot m(g)$.

Basically, eq. (\mathbb{E}) aims at proposing a quantitative (metric) significance to the qualitative connection exerted by G between points of E. Apart from this equation and the starting distance d, any two points of E are not supposed to be otherwise connected. Thus, $\mu_{u,v}$ has not to represent any coupling between u and v. In other words, the symmetric map $\mu(\mathbf{x}, \mathbf{y})$ of $E \times E$ is a function of independent arguments $\pi(\mathbf{x})$ and $\pi(\mathbf{y})$, where π is a numerical map of E. The simplest symmetric form is henceforth retained:

$$\mu_{\mathbf{u},\mathbf{v}}(g) = \mu(g\mathbf{u},g\mathbf{v}) \cdot m(g) = \pi(g\mathbf{u})\pi(g\mathbf{v}) \cdot m(g) \,.$$

In conclusion, an equation (\mathbb{E}) is consistently constructed from a given metric space E mapped by a continuous numerical function π and endowed by the action of a given group G idependently mapped by a function m.

Within the framework of the local interpretation of (\mathbb{E}) , i.e. for $\mathbf{v} = \mathbf{u} + d\mathbf{u}$, most of the integrand factors $\mu_{\mathbf{u},\mathbf{v}}(g) = \mu_{\mathbf{u},\mathbf{u}+d\mathbf{u}}(g)$ can be simply replaced in (\mathbb{E}) by $\mu_{\mathbf{u},\mathbf{u}}(g) = \pi^2(g\mathbf{u}) \cdot m(g)$, where we have put: $d\mathbf{u} = \mathbf{0}$. The corresponding solution is expected to define a metric, and is still denoted $D_p^2(\mathbf{u}, \mathbf{u} + d\mathbf{u}) = d\sigma^2$. However, not all the factors $\mu_{\mathbf{u},\mathbf{u}+d\mathbf{u}}(g)$ can be consistently replaced by $\mu_{\mathbf{u},\mathbf{u}}(g)$: this point is detailed in the last section, where an improved formulation of the local equation (\mathbb{E}) is derived.

Example

The real axis R is considered as an Euclidean vector space. The orthogonal group reduces to $G = \{e, \sigma\}$. It is supposed that the operations of G occur with equal weights, namely: m(g) = 1. In order to define μ , a single free parameter, denoted a, is needed:

$$e^{-a} = rac{\mu(\sigma x, \sigma y)}{\mu(x, y)} = rac{\pi(\sigma x)\pi(\sigma y)}{\pi(x)\pi(y)}$$

When μ is constant, a comprehensive study has been carried out [2,8]. An analogous technical calculation, leads to

$$\begin{split} \Phi_{x,y}(D_p(x,y)) &= \frac{1}{(1+e^{-a})^2} \left\{ (1+e^{-2a}) \exp[pD_p^2(x,y)] + 2e^{-a} \exp[-pD_p(x,y)] \right\} \\ K_p(x,y) &= \frac{\cosh(px^2+a/2)\cosh(py^2+a/2)}{\cosh^2(pxy+a/2)} \; . \end{split}$$

The resolution of the associated equation (\mathbb{E}) gives

$$D_p(x,y) = \sqrt{\frac{1}{p} \ln \left[\frac{\cosh^2(a/2)K_p^p + \sqrt{\cosh^4(a/2)K_p^{2p} - \cosh a}}{\cosh a} \right]}$$

When a = 0, the result of ref. [2] is reproduced. Notice that if a = 0, then $D_p(x, 0) = |x|$, but if $a \neq 0$, then $D_p(x, 0) \neq |x|$.

The differential form of (\mathbb{E}) corresponds to the case y = x + dx, and gives

$$\Phi_{x,x+dx}(d\sigma^2) = 1 + p \tanh^2\left(\frac{a}{2}\right) d\sigma^2$$

$$K_p(x,x+dx) = 1 + p \left\{ \tanh\left(px^2 + \frac{a}{2}\right) + \frac{px^2}{\cosh^2\left(px^2 + \frac{a}{2}\right)} \right\} dx^2,$$

where a is now defined for dx = 0, by

$$e^{-a} = \frac{\mu(\sigma x, \sigma x)}{\mu(x, x)} = \frac{\pi^2(\sigma x)}{\pi^2(x)}$$

Thus,

$$d\sigma^2 = \frac{1}{\tanh^2\left(\frac{a}{2}\right)} \left\{ \tanh\left(px^2 + \frac{a}{2}\right) + \frac{px^2}{\cosh^2\left(px^2 + \frac{a}{2}\right)} \right\} dx^2.$$

For a = 0, $d\sigma^2$ is not defined by this process. This has been previously outlined, but a formal expression for $d\sigma^4$ could be derived [8].

In an attempt to regard $d\sigma^2$ as a linear element of a curve " $y = y_a(x)$ " in \mathbb{R}^2 , we seek for a function y_a such that $d\sigma = ds_x = \sqrt{1 + y'_a(x)} dx$, i.e.:

$$y'_{a}(x) = \sqrt{\frac{1}{\tanh^{2}\left(\frac{a}{2}\right)}} \left\{ \tanh\left(px^{2} + \frac{a}{2}\right) + \frac{px^{2}}{\cosh^{2}\left(px^{2} + \frac{a}{2}\right)} \right\} - 1.$$

The equation of the curve passing by zero is thus:

$$y_a(x) = \int_0^x \sqrt{\frac{1}{\tanh^2\left(\frac{a}{2}\right)}} \left\{ \tanh\left(pt^2 + \frac{a}{2}\right) + \frac{pt^2}{\cosh^2\left(pt^2 + \frac{a}{2}\right)} \right\} - 1 \, dt \, .$$

It should be emphasized that the scalar "a" may depend on x (and on t in the integral).

4. Discussion

In a speculative interpretation, the function π can be regarded as a characteristic of the symmetry of a space endowed with a "topography", whereas the exponential integrand factors (membership functions of fuzzy subgroups or conjugacy links of G) [7] characterize the symmetry of a reference coordinate space (e.g. $E = R^n$) qualitatively endowed with a set of "allowed motions" (represented by G). The coordinate space just maps the "topographical space" with a distorted geometry (e.g. a Riemanian manifold V_n). In view of such a representation, further studies will focus on Euclidean spaces where $C_m(\mathbf{u}, \mathbf{v}) = 1$ (f(p) has not to be determined).

5. Precision on the differential form of (\mathbb{E}) for infinite compact group G

The left-hand term of (\mathbb{E}) has been first defined as an integral over G^4 . However, one now carefully analyzes the case of an infinite compact group G. Let Γ be the subset of G^4 collecting the operations (g, h, k, l) such that $C_{g,h,k,l}(\mathbf{u}, \mathbf{u})$ is a priori defined (i.e. $C_{g,h,k,l}(\mathbf{u}, \mathbf{u}) \neq \stackrel{\circ}{\overset{\circ}{_0}}{\overset{\circ}{_0}}$). Since G^4 - Γ is negligeable in G^4 , the differential form can be written down (for an Euclidean space $E: C_{\mathbf{m}}(\mathbf{u}, \mathbf{v}) = 1$):

$$\begin{split} \varPhi_{\mathbf{u},\mathbf{u}+d\mathbf{u}}(d\sigma) &\approx \Bigg[\iiint_{G^4} \mu_{\mathbf{u},\mathbf{u}}(g)\mu_{\mathbf{u},\mathbf{u}}(h)\mu_{\mathbf{u},\mathbf{u}}(k)\mu_{\mathbf{u},\mathbf{u}}(l)[1+pC_{g,h,k,l}(\mathbf{u},\mathbf{u})d\sigma^2 \\ &+ \dot{p}^2 C_{g,h,k,l}^2(\mathbf{u},\mathbf{u})d\sigma^4/2 + \ldots] \, dg \, dh \, dk \, dl \Bigg] \Big/ \\ &\left[\iiint_{G^4} \mu_{\mathbf{u},\mathbf{u}}(g)\mu_{\mathbf{u},\mathbf{u}}(h)\mu_{\mathbf{u},\mathbf{u}}(k)\mu_{\mathbf{u},\mathbf{u}}(l) \, dg \, dh \, dk \, dl \right] \\ &\approx 1+pA(\mathbf{u})d\sigma^2 + \ldots d\sigma^4 + \ldots \,, \end{split}$$

where

$$A(\mathbf{u}) = \frac{\iint \iint \int \mu_{\mathbf{u},\mathbf{u}}(g)\mu_{\mathbf{u},\mathbf{u}}(h)\mu_{\mathbf{u},\mathbf{u}}(k)\mu_{\mathbf{u},\mathbf{u}}(l)\frac{(g\mathbf{u}-h\mathbf{u} \mid k\mathbf{u}-l\mathbf{u})}{||g\mathbf{u}-h\mathbf{u}|| \cdot ||k\mathbf{u}-l\mathbf{u}||} dg dh dk dl$$
$$\iint \iint \int \iint \int \int \int \int \mu_{\mathbf{u},\mathbf{u}}(g)\mu_{\mathbf{u},\mathbf{u}}(h)\mu_{\mathbf{u},\mathbf{u}}(k)\mu_{\mathbf{u},\mathbf{u}}(l) dg dh dk dl$$

The coefficient $pA(\mathbf{u})$ of $d\sigma^2$ vanishes (given any value of the integrand, the permutation of g and h simply results in the change of the sign of the integrand). Therefore, no definition of $d\sigma^2$ is furnished. Instead, we get a formal definition of $d\sigma^4$, and this state of affairs has been partially discussed in the case $\mu_{\mathbf{u},\mathbf{u}} \equiv 1$. In order to get a relevant definition of a linear element ds^2 related to $d\sigma^2$, the above formal derivation is not corrected on the basis the analysis of the finite case.

Let us consider the case of a finite group G, with a cardinality $\gamma = \#(G)$, acting isometrically on an Euclidean space.

For $g \neq k$ and $k \neq l$, the coefficient $C_{g,h,k,l}(\mathbf{u}, \mathbf{u})$ is a priori different from " $\frac{0}{0}$ ", and it can be identified with the corresponding term $C_{g,h,k,l}(\mathbf{u}, \mathbf{u} + d\mathbf{u})$ in the upper integral of $\Phi_{\mathbf{u},\mathbf{u}+d\mathbf{u}}(d\sigma)$. This situation is referred to as the case "0":

"0" – when
$$g \neq k$$
 and $k \neq l(\gamma^4 - 2\gamma^3 - \gamma^2$ terms among the γ^4 terms in G^4).

On the other hand, there are three cases in which $C_{g,h,k,l}(\mathbf{u},\mathbf{u})$ is *a priori* not defined (i.e. $C_{g,h,k,l}(\mathbf{u},\mathbf{u}) = \overset{\circ}{0}$):

"1" – when g = h and $k \neq l(\gamma^3$ terms among the γ^4 terms in G^4),

"2" – when $g \neq h$ and $k = l(\gamma^3 \text{ terms among the } \gamma^4 \text{ terms in } G^4)$,

"3" – when g = h and $k = l(\gamma^2 \text{ terms among the } \gamma^4 \text{ terms in } G^4)$.

In these cases, it is necessary to consider $d\mathbf{u} \neq \mathbf{0}$ and turn back to the complete expression $C_{g,h,k,l}(\mathbf{u},\mathbf{u}+d\mathbf{u}) \neq C_{g,h,k,l}(\mathbf{u},\mathbf{u})$.

Each situation 0, 1, 2 or 3 corresponds to a set of four-fold operations (g, h, k, l) respectively denoted G_0, G_1, G_2 and G_3 .

Since G is finite, the upper or the lower integral occurring in $\Phi_{u,u+du}(d\sigma)$ is actually an arithmetic mean and can be replaced by a sum over G^4 : this sum is split into four sums over the G_i 's, each of them being in turn expressed as mean integrals:

$$\frac{1}{\gamma^4} \sum_{G^4} \cdots = \frac{1}{\gamma^4} \left\{ \sum_{G_0} \cdots + \sum_{G_1} \cdots + \sum_{G_2} \cdots + \sum_{G_3} \cdots \right\}$$
$$= \frac{1}{\gamma^4} \left\{ \#(G_0) \int_{G_0} \cdots + \#(G_1) \int_{G_1} \cdots + \#(G_2) \int_{G_2} \cdots + \#(G_3) \int_{G_3} \cdots \right\}$$

$$= \frac{1}{\gamma^4} \left\{ (\gamma^4 - 2\gamma^3 - \gamma^2) \int_{G_0} \dots + \gamma^3 \int_{G_1} \dots + \gamma^3 \int_{G_2} \dots + \gamma^2 \int_{G_3} \dots \right\}$$
$$= \left(1 - \frac{2}{\gamma} - \frac{1}{\gamma^2}\right) \int_{G_0} \dots + \frac{1}{\gamma} \int_{G_1} \dots + \frac{1}{\gamma} \int_{G_2} \dots + \frac{1}{\gamma^2} \int_{G_3} \dots$$

Therefore, the left-hand side of eq. (\mathbb{E}) reads

$$\begin{split} \Phi_{\mathbf{u},\mathbf{u}+d\mathbf{u}}(d\sigma) \\ \approx \frac{\int_{G_4} \mu_{\mathbf{u},\mathbf{u}}(g)\mu_{\mathbf{u},\mathbf{u}}(h)\mu_{\mathbf{u},\mathbf{u}}(k)\mu_{\mathbf{u},\mathbf{u}}(l) \exp[pC_{g,h,k,l}(\mathbf{u},\mathbf{u}+d\mathbf{u})d\sigma^2] \, d(g,h,k,l)}{\left[\int_G \mu_{\mathbf{u},\mathbf{u}}(g) \, dg\right]^4} \\ \approx \frac{\int_{G_4} \mu_{\mathbf{u},\mathbf{u}}(g)\mu_{\mathbf{u},\mathbf{u}}(h)\mu_{\mathbf{u},\mathbf{u}}(k)\mu_{\mathbf{u},\mathbf{u}}(l)[1+pC_{g,h,k,l}(\mathbf{u},\mathbf{u}+d\mathbf{u})d\sigma^2] \, d(g,h,k,l)}{\left[\int_G \mu_{\mathbf{u},\mathbf{u}}(g) \, dg\right]^4} \\ \approx 1+p\frac{\left(1-\frac{2}{\gamma}-\frac{1}{\gamma^2}\right)\int_{G_0} dN_0+\frac{1}{\gamma}\int_{G_1} dN_1+\frac{1}{\gamma}\int_{G_2} dN_2+\frac{1}{\gamma^2}\int_{G_3} dN_3}{\left[\int_G \mu_{\mathbf{u},\mathbf{u}}(g) \, dg\right]^4} \, d\sigma^2 \, d\sigma$$

where

*
$$dN_0 = \mu_{\mathbf{u},\mathbf{u}}(g)\mu_{\mathbf{u},\mathbf{u}}(h)\mu_{\mathbf{u},\mathbf{u}}(k)\mu_{\mathbf{u},\mathbf{u}}(l)C_{g,h,k,l}(\mathbf{u},\underline{\mathbf{u}})\,dg\,dh\,dk\,dl\,(g\neq h,k\neq l),$$

- * $dN_1 = \mu_{\mathbf{u},\mathbf{u}}^2(g)\mu_{\mathbf{u},\mathbf{u}}(k)\mu_{\mathbf{u},\mathbf{u}}(l)C_{g,g,k,l}(\mathbf{u},\mathbf{u}+d\mathbf{u}) dg dk dl (g = h, k \neq l$: formally, dg here represents a measure "induced" by the "diagonal measure dg^2 " of G^2 onto G_1).
- * $dN_2 = \mu_{\mathbf{u},\mathbf{u}}(g)\mu_{\mathbf{u},\mathbf{u}}(h)\mu_{\mathbf{u},\mathbf{u}}^2(k)C_{g,h,k,k}(\mathbf{u},\mathbf{u}+d\mathbf{u})\,dg\,dh\,dk \ (g \neq h; \ k = l; \text{ formally}, dk \text{ here represents a measure "induced" by the diagonal measure <math>dk^2$ of G^2 onto G_2).
- * $dN_3 = \mu_{\mathbf{u},\mathbf{u}}^2(g)\mu_{\mathbf{u},\mathbf{u}}^2(k)C_{g,g,k,k}(\mathbf{u},\mathbf{u}+d\mathbf{u}) dg dk (g=h; k=l; dg and dk are for$ $mally defined as in <math>dN_1$ and dN_2).

All but one of the four upper integrals vanish. Indeed,

•
$$\int_{G_0} dN_0 = \iint_{G^4, g \neq h, k \neq l} \iint_{\mu_{\mathbf{u},\mathbf{u}}} (g) \mu_{\mathbf{u},\mathbf{u}}(h) \mu_{\mathbf{u},\mathbf{u}}(k) \mu_{\mathbf{u},\mathbf{u}}(l) \frac{(g\mathbf{u} - h\mathbf{u}|k\mathbf{u} - l\mathbf{u})}{\|g\mathbf{u} - h\mathbf{u}\| \cdot \|k\mathbf{u} - l\mathbf{u}\|} \, dg \, dh \, dk \, dl = 0 \,,$$

for the exchange of k and l (or g and h) in any value of the integrand affords the opposite value of the integrand.

$$\begin{split} \bullet \int_{G_1} dN_1 &= \int \int \int_{G_3} \int \mu_{\mathbf{u},\mathbf{u}}^2(g) \mu_{\mathbf{u},\mathbf{u}}(k) \mu_{\mathbf{u},\mathbf{u}}(l) \frac{(g\mathbf{u} - g(\mathbf{u} + d\mathbf{u}) || k\mathbf{u} - l\mathbf{u})}{||g\mathbf{u} - g(\mathbf{u} + d\mathbf{u})|| \cdot ||k\mathbf{u} - l\mathbf{u}||} \, dg \, dk \, dl = 0 \,, \\ &= \int \int \int_{G_3} \int \mu_{\mathbf{u},\mathbf{u}}^2(g) \mu_{\mathbf{u},\mathbf{u}}(k) \mu_{\mathbf{u},\mathbf{u}}(l) \frac{(gd\mathbf{u} |k\mathbf{u} - l\mathbf{u}|)}{||d\mathbf{u}|| \cdot ||k\mathbf{u} - l\mathbf{u}||} \, dg^2 \, dk \, dl = 0 \end{split}$$

for the exchange of k and l in any value of the integrand affords the opposite value of the integrand. Likewise, $\int_{G_1} dN_2 = 0$.

•
$$\int_{G_3} dN_3 = \iint_{G_2} \mu_{\mathbf{u},\mathbf{u}}^2(g) \mu_{\mathbf{u},\mathbf{u}}^2(k) \frac{(g\mathbf{u} - g(\mathbf{u} + d\mathbf{u}))|k\mathbf{u} - k(\mathbf{u} + d\mathbf{u})|}{||g\mathbf{u} - g(\mathbf{u} + d\mathbf{u})|| \cdot ||k\mathbf{u} - k(\mathbf{u} + d\mathbf{u})||} \, dg \, dk$$
$$= \iint_{G_2} \mu_{\mathbf{u},\mathbf{u}}^2(g) \mu_{\mathbf{u},\mathbf{u}}^2(k) \frac{(gd\mathbf{u}|kd\mathbf{u})}{||d\mathbf{u}||^2} \, dg \, dk = \frac{||d\mathbf{U}||^2}{||d\mathbf{u}||^2} \ge 0 \,,$$

where

$$d\mathbf{U} = \int\limits_{G} \mu_{\mathbf{u},\mathbf{u}}^2(g)(gd\mathbf{u}) \, dg$$

In conclusion, if G is a finite group $(1 \leq \gamma < \infty \text{ and } dg = 1/\gamma)$:

$$\Phi_{\mathbf{u},\mathbf{u}+d\mathbf{u}}(d\sigma) \approx 1 + p \frac{\frac{1}{\gamma^2} \int_{G_3} dN_3}{\left[\int_G \mu_{\mathbf{u},\mathbf{u}}(g) \, dg \right]^4} d\sigma^2 \approx 1 + p B^2(\mathbf{u},d\mathbf{u}) \left[\frac{d\sigma}{\gamma} \right]^2,$$

where

$$B^{2}(\mathbf{u}, d\mathbf{u}) = \frac{1}{\left[\int_{G} \mu_{\mathbf{u}, \mathbf{u}}(g) dg\right]^{4}} \frac{\|d\mathbf{U}\|^{2}}{\|d\mathbf{u}\|^{2}}$$

As it has already been underlined [8], it is clear that when $\gamma = \infty$, this derivation does not afford a definition of $d\sigma^2$. Nevertheless, it still defines the quantity: $ds = d\sigma/\gamma$, and the definition reads

$$\Phi_{\mathbf{u},\mathbf{u}+d\mathbf{u}}(\gamma ds) \approx 1 + pB^2(\mathbf{u},d\mathbf{u}) \, ds^2$$

Under this form (with $\Phi_{\mathbf{u},\mathbf{u}+d\mathbf{u}}(\gamma ds) = K_p(\mathbf{u},\mathbf{u}+d\mathbf{u})$), it furnishes a definition of ds^2 whatever is the finite or infinite group G considered.

The following definition of d_p and ds are therefore suggested:

$$\gamma ds = d\sigma = D_p(\mathbf{u}, \mathbf{u} + d\mathbf{u}),$$

where $\gamma = \#G$.

When G is a finite group, the results hitherto established for D_p and $d\sigma$ can be easily written down in terms of ds and d_p , which become distance extensions of the starting distance d/γ instead of the equivalent distance d. This definition also brings a rigorous formulation of the singularity of $d\sigma^2$ on the unit representation space V_1 contained in a larger representation space $V = V_1 \oplus V_2$ of the group $S_2 \approx \{e, \sigma\}$ (where: $\forall \mathbf{u} \in V_2, e\mathbf{u} = \mathbf{u}, \sigma \mathbf{u} = -\mathbf{u}$).

When G is an infinite group, (\mathbb{E}) is still a definition of ds^2 . However, D_p can still be finite (e.g. if G is compact) and no definition of d_p is furnished.

If $\mu_{\mathbf{u},\mathbf{u}}^2(g) = 1$ for any operation g, then $\mathbf{U} = \int_G (gd\mathbf{u}) dg$: if there exists some operation g_0 such that $g_0 d\mathbf{u} = -d\mathbf{u}$, then $d\mathbf{U} = 0$, and no definition of ds^2 is available. The situation formerly discussed for the infinite group $G = \mathcal{C}_{\infty}$ in \mathbb{R}^2 fulfills the latter condition and thus, a formal calculation of $d\sigma^4$ only remains possible [8].

If $B(\mathbf{u}, d\mathbf{u})$ does not vary with $d\mathbf{u}$, and if $B(\mathbf{u}, d\mathbf{u}) \neq 0$, then the equation provides a definition of a metric ds^2 in the classical sense of Riemannian manifolds. This problem will be discussed later.

6. Conclusion

The framework of the definition of completely G-invariant distance extensions is now generalized to the more general definition of G-weighted distance extensions. The formulation of the local version affording a definition of G-weighted metrics has been clarified. In particular, the borderline case of infinite compact groups is rigorously treated by the introduction of the related metric $ds^2 = d\sigma^2/\gamma^2$, where $\gamma = \#G$. Everything seems to be at our disposal to search (at least formally) for an eventual connection with tools of physical mathematics. This challenge will come under a speculative interpretation of the wheighting symmetry function $\mu_{u,v}$ which is to be determined. This is undertaken in the next paper.

References and notes

- [1] (a) R. Chauvin, J. Phys. Chem. 96 (1992) 4701; (b) 4706.
- [2] R. Chauvin, Paper III of this series, J. Math. Chem. 16 (1994) 269.
- [3] R. Chauvin, Entropy in dissimilarity and chirality measures, submitted for publication.
- [4] R. Chauvin, Paper II of this series, J. Math. Chem. 16 (1994) 257.

- [5] D_{∞} is defined by: $\forall (\mathbf{u}, \mathbf{v}) \in E^2$, $D_{\infty}(\mathbf{u}, \mathbf{v}) = \operatorname{Inf}_{g \in G, h \in G} d(g\mathbf{u}, h\mathbf{v})$. [6] D_0 is defined by: $\forall (\mathbf{u}, \mathbf{v}) \in E^2$, $D_0(\mathbf{u}, \mathbf{v}) = 1/[\int_G dg/d(g\mathbf{u}, \mathbf{v})]$. [7] R. Chauvin, Paper I of this series, J. Math. Chem. 16 (1994) 245.

- [8] R. Chauvin, Paper IV of this series, J. Math. Chem. 16 (1994) 285.