Chemical algebra. V: G-weighted distance extensions and metrics

Remi Chauvin
Laboratoire de Chimie de Coordination du C.N.R.S., Unité 8241, liée par convention àl'Université Paul Sabatier, 205 Route de Narbonne, 31077 Toulouse Cedex, France

Received 16 September 1994

Abstract

The first formulation of the definition equation of completely- G-invariant distance extensions from the action of a compact group G onto a metric space (E, d) is reminded. A more general equation (\mathbb{E}) is then consistently associated to a group G mapped by a numerical function m and acting on a metric space (E, d) mapped by another continuous numerical function. A solution of (\mathbb{E}) is called a " G-weighted distance extension of d ". A differential form of the equation is derived in order to provide a definition of a " G-weighted metric" $d s^{2}=(d \sigma / \gamma)^{2}$ from a non-uniform map of an Euclidean space: $\gamma=\# G$ when G is a finite group, but $d s^{2}$ is also defined by continuity when G is an infinite compact group $(\gamma=\infty)$.

1. Introduction

Starting from an algebraic analysis of chemical pairing equilibria $2 M N$ $\rightleftarrows M M+N N$, a mathematical model has been devised to show that, under specified circumstances, the constant

$$
K=\frac{[M M] \cdot[N N]}{[M N]^{2}}
$$

is always greater than 1 and equals 1 if and only if the chemical moieties M and N are identical [1]. In the model, M and N are represented by vectors of a space E whose dimension equals the number of atomic sites in the common skeleton of M and N. A somewhat abstract derivation has given rise to intriguing results related to the theory of completely G-invariant distances, where G is a compact group acting on an Euclidean space (the very first meaning of this action resides in the symmetry of the molecular skeleton of M and N): a general equation has been proposed to define a completely G-invariant extension of the Euclidean distance on E [2]. The theoretical relevance of this equation has been examined, and its differential resolution has been tackled. On the other hand, a more general equation has been
constructed from non-necessarily Euclidean metric spaces: the non-Euclidean Hausdorff distance of R^{n} was considered in view of geometrical applications, namely the quantification of the chirality of geometrical figures [3]. In this report, a further generalization is envisaged for metric spaces and groups additionally endowed with numerical maps.

2. Reminder: definition of completely G-invariant distance extensions

Given a metric space (E, d) endowed with an isometric action of a compact group G, a general equation (\mathbb{E}) defining a completely- G-invariant distance extension D_{p} of d from a "discriminating pairing product K_{p} " [4] has been devised [2]. The definition equation has been constructed in order to meet the following requirements:
(i) G-invariance requirements
(a) D_{p} is completely G-invariant, i.e. the functional equation linking K_{p} and D_{p} preserves the complete G-invariance of K_{p}.
(b) $\forall \mathbf{u} \in E, \forall g \in G, D_{p}(\mathbf{u}, g \mathbf{u})=0$.
(ii) Extension requirements
(a) D_{p} is an extension of the metric distance d : if u_{0} is invariant to all the operations of G, then: $\forall \mathbf{u} \in E, \forall g \in G, D_{p}\left(\mathbf{u}, \mathbf{u}_{0}\right)=d\left(g \mathbf{u}, \mathbf{u}_{0}\right)=d\left(\mathbf{u}, \mathbf{u}_{0}\right)$.
(b) When $p \rightarrow \infty, D_{p}$ tends to the standard completely G-invariant distance D_{∞} [5].
(c) When $p \rightarrow 0, D_{p}$ tends to the "smooth" completely G-invariant distance D_{0} [6].
(iii) Distance properties on E / G
(a) $\forall(\mathbf{u}, \mathbf{v}) \in E^{2}, 0 \leqslant D_{p}(\mathbf{u}, \mathbf{v})$.
(b) $\forall(\mathbf{u}, \mathbf{v}) \in E^{2}, D_{p}(\mathbf{u}, \mathbf{v})=0 \Rightarrow \exists h \in G, \mathbf{v}=g \mathbf{u}$ (converse of (ib)).
(c) $\forall(\mathbf{u}, \mathbf{v}, \mathbf{w}) \in E^{3}, D_{p}(\mathbf{u}, \mathbf{w}) \leqslant D_{p}(\mathbf{u}, \mathbf{v})+D_{p}(\mathbf{v}, \mathbf{w})$.

Two propositions are now recalled.

THEOREM 1

Let G be a finite or compact group acting on metric space (E, d) and preserving the distance $\left(\forall(\mathbf{u}, \mathbf{v}) \in E^{2}, \forall g \in G, d(g \mathbf{u}, g \mathbf{v})=d(\mathbf{u}, \mathbf{v})\right)$. For $p>0$, let K_{p} be a discriminating pairing product on $(E, d ; G)$ (i.e. $K_{p} \geqslant 1$, and $K_{p}(\mathbf{u}, \mathbf{v})=1$ if and only if $\mathbf{v}=g \mathbf{u}$ for some operation g of G). If E is an Euclidean vector space, consider the equation of an unknown function $D_{p}: E \times E \rightarrow R_{+}$:

$$
\begin{equation*}
\Phi_{\mathbf{u}, \mathbf{v}}\left(D_{p}(\mathbf{u}, \mathbf{v})\right)=\left[K_{p}(\mathbf{u}, \mathbf{v})\right]^{p} \tag{E}
\end{equation*}
$$

with

$$
\begin{aligned}
& \Phi_{\mathbf{u}, \mathbf{v}}(x)=\iiint \int_{G^{4}} \exp \left[\frac{p}{2} \frac{(g \mathbf{u}-h \mathbf{v} \mid k \mathbf{u}-l \mathbf{v})}{\|g \mathbf{u}-h \mathbf{v}\| \cdot\|k \mathbf{u}-l \mathbf{v}\|} x^{2}\right] d g d h d k d l, \\
& K_{p}^{p}(\mathbf{u}, \mathbf{v})=\frac{\int_{G} \exp \left[-\frac{p}{2}(g \mathbf{u} \mid \mathbf{u})\right] d g \cdot \int_{G} \exp \left[-\frac{p}{2}(g \mathbf{v} \mid \mathbf{v})\right] d g}{\left(\int_{G} \exp \left[-\frac{p}{2}(g \mathbf{u} \mid \mathbf{v})\right] d g\right)^{2}} .
\end{aligned}
$$

Then, eq. (E) has a single solution D_{p}. Furthermore, D_{p} fulfills the aforementioned consistency requirements (i), (ii) and (iii), except, perhaps, the triangular inequality (iiic).

This formulation has been generalized for any metric space [3].

THEOREM 2

Let G be a finite or compact group acting on a metric space (E, d) and preserving the distance. For $p>0$, let K_{p} be a discriminating pairing product on ($E, d ; G$), consider the equation of an unknown function $D_{p}: E \times E \rightarrow R_{+}$:

$$
\begin{equation*}
\Phi_{\mathbf{u}, \mathbf{v}}\left(D_{p}(\mathbf{u}, \mathbf{v})\right)=\left[K_{p}(\mathbf{u}, \mathbf{v})\right]^{p} \tag{E}
\end{equation*}
$$

with

$$
\begin{aligned}
& K_{p}^{p}(\mathbf{u}, \mathbf{v})=\frac{\int_{G} \exp \left[-\frac{p}{2} d^{2}(g \mathbf{u}, \mathbf{u})\right] d g \cdot \int_{G} \exp \left[-\frac{p}{2} d^{2}(g \mathbf{v}, \mathbf{v})\right] d g}{\left(\int_{G} \exp \left[-\frac{p}{2} d^{2}(g \mathbf{u}, \mathbf{v})\right] d g\right)^{2}}, \\
& \Phi_{\mathbf{u}, \mathbf{v}}(x)=\iiint_{G^{3}} \exp \left[p \frac{C_{g, h, k}(\mathbf{u}, \mathbf{v})}{C_{\mathbf{m}}(\mathbf{u}, \mathbf{v})^{f(p)}} x^{2}\right] d g d h d k,
\end{aligned}
$$

where

- $\quad C_{g, h, k}(\mathbf{u}, \mathbf{v})=\frac{d^{2}(g \mathbf{u}, \mathbf{v})+d^{2}(k \mathbf{u}, h \mathbf{v})-d^{2}(g \mathbf{u}, k \mathbf{u})-d^{2}(\mathbf{v}, h \mathbf{v})}{2 d(g \mathbf{u}, h \mathbf{v}) \cdot d(k \mathbf{u}, \mathbf{v})}$,
- $C_{\mathrm{m}}(\mathbf{u}, \mathbf{v})=\max \left\{C_{g, h, k}(\mathbf{u}, \mathbf{v}) ;(g, h, k) \in G^{3}\right\}(\geqslant 1)$,
- $f(p)$ is some regular function eventually depending on (\mathbf{u}, \mathbf{v}) satisfying $f(0)=0$ and $f(\infty)=1\left(\right.$ e.g. $\left.f(p)=\left[p /\left(p-p_{0}\right)\right]^{2}, p_{0} \neq 0\right)$.

Then, (\mathbb{E}) has a single solution D_{p} which fulfils the aforementioned requirements,
except, perhaps, the triangular inequality (iv). If (E, d) is an Euclidean vector space, then

$$
C_{g, h, k}(\mathbf{u}, \mathbf{v})=\frac{(g \mathbf{u}-h \mathbf{v} \mid k \mathbf{u}-\mathbf{v})}{\|g \mathbf{u}-h \mathbf{v}\| \cdot\|k \mathbf{u}-\mathbf{v}\|}=\cos (g \mathbf{u}-h \mathbf{v}, k \mathbf{u}-\mathbf{v}) \leqslant C_{\mathrm{m}}(\mathbf{u}, \mathbf{v})=1
$$

In this case, the definition of D_{p} does not require the full dermination of $f(p)$.

3. A more general formulation: definition of G-weighted distance extensions

A definition equation (\mathbb{E}) of a distance on E / G is associated to any given metric space E endowed with an operation of some compact group G. However, a more general equation can be naturally associated to any continuous numerical function defined on $E^{2} \times G$, even if it is not uniform on E. This extension boils down to weigh the integrands taking place in (\mathbb{E}) in the following way:

$$
\begin{equation*}
\Phi_{\mathbf{u}, \mathbf{v}}\left(D_{p}(\mathbf{u}, \mathbf{v})\right)=\left[K_{p}(\mathbf{u}, \mathbf{v})\right]^{p} \tag{E}
\end{equation*}
$$

with

$$
\begin{gathered}
K_{p}^{p}(\mathbf{u}, \mathbf{v})=\frac{\int_{G} \mu_{\mathbf{u}, \mathbf{v}}(g) \exp \left[-\frac{p}{2} d^{2}(g \mathbf{u}, \mathbf{u})\right] d g \cdot \int_{G} \mu_{\mathbf{u}, \mathbf{v}}(g) \exp \left[-\frac{p}{2} d^{2}(g \mathbf{v}, \mathbf{v})\right] d g}{\int_{G} \mu_{\mathbf{u}, \mathbf{v}}(g) \exp \left[-\frac{p}{2} d^{2}(g \mathbf{u}, \mathbf{v})\right] d g \cdot \int_{G} \mu_{\mathbf{u}, \mathbf{v}}(g) \exp \left[-\frac{p}{2} d^{2}(g \mathbf{v}, \mathbf{u})\right] d g} \\
\Phi_{\mathbf{u}, \mathbf{v}}(x)=\frac{\iiint \int_{G^{4}} \mu_{\mathbf{u}, \mathbf{v}}(g) \mu_{\mathbf{u}, \mathbf{v}}(h) \mu_{\mathbf{u}, \mathbf{v}}(k) \mu_{\mathbf{u}, \mathbf{v}}(l) \exp \left[p \frac{C_{g, h, k, l}(\mathbf{u}, \mathbf{v})}{C_{\mathbf{m}}(\mathbf{u}, \mathbf{v})^{f(p)}} x^{2}\right] d g d h d k d l}{\left[\int_{G^{4}} \mu_{\mathbf{u}, \mathbf{v}}(g) d g\right]^{4}},
\end{gathered}
$$

where $(\mathbf{u}, \mathbf{v} ; g) \rightarrow \mu_{\mathrm{u}, \mathrm{v}}(g)$ is a continuous numerical function on $E^{2} \times G$ such that

$$
\mu_{\mathrm{u}, \mathrm{v}}=\mu_{\mathrm{v}, \mathrm{u}}
$$

Remark 1

When $\mathbf{u}=\mathbf{v}$, the extended equation (\mathbb{E}) is trivially verified for $D_{p}(\mathbf{u}, \mathbf{u})=0$.

Remark 2

The latter symmetry condition in \mathbf{u} and \mathbf{v} garantees the symmetry of the solution, i.e.: $D_{p}(\mathbf{u}, \mathbf{v})=D_{p}(\mathbf{v}, \mathbf{u})$. The denominator of $K_{p}^{p}(\mathbf{u}, \mathbf{v})$ is no longer a squared integral: indeed, K_{p} must be symmetric ($K_{p}(\mathbf{u}, \mathbf{v})=K_{p}(\mathbf{v}, \mathbf{u})$). However, if $\mu_{\mathrm{u}, \mathrm{v}}(g)=\mu_{\mathrm{u}, \mathrm{v}}\left(g^{-1}\right)$ for any $g \in G$, then the denominator is a squared integral.

Remark 3

The early formulation assumes that the integrals occurring in K_{p} and $\Phi_{\mathbf{u}, \mathbf{v}}(x)$ stretch over the whole group G. Nevertheless, for any points \mathbf{u} and \mathbf{v} of E, these integrals might be naturally restricted to any fuzzy subset \underline{A} of G, and $\mu_{\mathbf{u}, \mathbf{v}}$ can be interpreted as the membership function of \underline{A}, whereas $g \rightarrow \exp [-p d(g \mathbf{u}, \mathbf{u}) / \sqrt{2}]$ and $g \rightarrow \exp [-p d(g \mathbf{u}, \mathbf{v}) / \sqrt{2}]$ were interpreted as characteristic functions of fuzzy subgroups and conjugacy links respectively [7].

Remark 4: Form of the weighting function $\mu_{\mathrm{u}, \mathrm{v}}$

The group G is supposed to occur only through its action on E. It is therefore suggested that $\mu_{u, v}$ is actually a function μ of the two arguments $g \mathbf{u}$ and $g \mathbf{v}$, time a function m of the sole operation $g \in G$, i.e.: $\mu_{\mathbf{u}, \mathbf{v}}(g)=\mu(g \mathbf{u}, g \mathbf{v}) \cdot m(g)$.

Basically, eq. (\mathbb{E}) aims at proposing a quantitative (metric) significance to the qualitative connection exerted by G between points of E. Apart from this equation and the starting distance d, any two points of E are not supposed to be otherwise connected. Thus, $\mu_{\mathbf{u}, \mathbf{v}}$ has not to represent any coupling between \mathbf{u} and \mathbf{v}. In other words, the symmetric map $\mu(\mathbf{x}, \mathbf{y})$ of $E \times E$ is a function of independent arguments $\pi(\mathbf{x})$ and $\pi(\mathbf{y})$, where π is a numerical map of E. The simplest symmetric form is henceforth retained:

$$
\mu_{\mathbf{u}, \mathbf{v}}(g)=\mu(g \mathbf{u}, g \mathbf{v}) \cdot m(g)=\pi(g \mathbf{u}) \pi(g \mathbf{v}) \cdot m(g)
$$

In conclusion, an equation (\mathbb{E}) is consistently constructed from a given metric space E mapped by a continuous numerical function π and endowed by the action of a given group G idependently mapped by a function m.

Within the framework of the local interpretation of (\mathbb{E}), i.e. for $\mathbf{v}=\mathbf{u}+d \mathbf{u}$, most of the integrand factors $\mu_{\mathbf{u}, \mathbf{v}}(g)=\mu_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(g)$ can be simply replaced in (\mathbb{E}) by $\mu_{\mathbf{u}, \mathbf{u}}(g)=\pi^{2}(g \mathbf{u}) \cdot m(g)$, where we have put: $d \mathbf{u}=\mathbf{0}$. The corresponding solution is expected to define a metric, and is still denoted $D_{p}^{2}(\mathbf{u}, \mathbf{u}+d \mathbf{u})=d \sigma^{2}$. However, not all the factors $\mu_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(g)$ can be consistently replaced by $\mu_{\mathbf{u}, \mathbf{u}}(g)$: this point is detailed in the last section, where an improved formulation of the local equation (\mathbb{E}) is derived.

Example

The real axis R is considered as an Euclidean vector space. The orthogonal group reduces to $G=\{e, \sigma\}$. It is supposed that the operations of G occur with equal weights, namely: $m(g)=1$. In order to define μ, a single free parameter, denoted a, is needed:

$$
e^{-a}=\frac{\mu(\sigma x, \sigma y)}{\mu(x, y)}=\frac{\pi(\sigma x) \pi(\sigma y)}{\pi(x) \pi(y)}
$$

When μ is constant, a comprehensive study has been carried out [2,8]. An analogous technical calculation, leads to

$$
\begin{aligned}
& \Phi_{x, y}\left(D_{p}(x, y)\right)=\frac{1}{\left(1+e^{-a}\right)^{2}}\left\{\left(1+e^{-2 a}\right) \exp \left[p D_{p}^{2}(x, y)\right]+2 e^{-a} \exp \left[-p D_{p}(x, y)\right]\right\} \\
& K_{p}(x, y)=\frac{\cosh \left(p x^{2}+a / 2\right) \cosh \left(p y^{2}+a / 2\right)}{\cosh ^{2}(p x y+a / 2)}
\end{aligned}
$$

The resolution of the associated equation (\mathbb{E}) gives

$$
D_{p}(x, y)=\sqrt{\frac{1}{p} \ln \left[\frac{\cosh ^{2}(a / 2) K_{p}^{p}+\sqrt{\cosh ^{4}(a / 2) K_{p}^{2 p}-\cosh a}}{\cosh a}\right.}
$$

When $a=0$, the result of ref. [2] is reproduced. Notice that if $a=0$, then $D_{p}(x, 0)$ $=|x|$, but if $a \neq 0$, then $D_{p}(x, 0) \neq|x|$.

The differential form of (\mathbb{E}) corresponds to the case $y=x+d x$, and gives

$$
\begin{aligned}
& \Phi_{x, x+d x}\left(d \sigma^{2}\right)=1+p \tanh ^{2}\left(\frac{a}{2}\right) d \sigma^{2} \\
& K_{p}(x, x+d x)=1+p\left\{\tanh \left(p x^{2}+\frac{a}{2}\right)+\frac{p x^{2}}{\cosh ^{2}\left(p x^{2}+\frac{a}{2}\right)}\right\} d x^{2}
\end{aligned}
$$

where a is now defined for $d x=0$, by

$$
e^{-a}=\frac{\mu(\sigma x, \sigma x)}{\mu(x, x)}=\frac{\pi^{2}(\sigma x)}{\pi^{2}(x)}
$$

Thus,

$$
d \sigma^{2}=\frac{1}{\tanh ^{2}\left(\frac{a}{2}\right)}\left\{\tanh \left(p x^{2}+\frac{a}{2}\right)+\frac{p x^{2}}{\cosh ^{2}\left(p x^{2}+\frac{a}{2}\right)}\right\} d x^{2}
$$

For $a=0, d \sigma^{2}$ is not defined by this process. This has been previously outlined, but a formal expression for $d \sigma^{4}$ could be derived [8].

In an attempt to regard $d \sigma^{2}$ as a linear element of a curve " $y=y_{a}(x)$ " in R^{2}, we seek for a function y_{a} such that $d \sigma=d s_{x}=\sqrt{1+y_{a}^{\prime}(x)} d x$, i.e.:

$$
y_{a}^{\prime}(x)=\sqrt{\frac{1}{\tanh ^{2}\left(\frac{a}{2}\right)}\left\{\tanh \left(p x^{2}+\frac{a}{2}\right)+\frac{p x^{2}}{\cosh ^{2}\left(p x^{2}+\frac{a}{2}\right)}\right\}-1}
$$

The equation of the curve passing by zero is thus:

$$
y_{a}(x)=\int_{0}^{x} \sqrt{\frac{1}{\tanh ^{2}\left(\frac{a}{2}\right)}\left\{\tanh \left(p t^{2}+\frac{a}{2}\right)+\frac{p t^{2}}{\cosh ^{2}\left(p t^{2}+\frac{a}{2}\right)}\right\}-1 d t . . . ~}
$$

It should be emphasized that the scalar " a " may depend on x (and on t in the integral).

4. Discussion

In a speculative interpretation, the function π can be regarded as a characteristic of the symmetry of a space endowed with a "topography", whereas the exponential integrand factors (membership functions of fuzzy subgroups or conjugacy links of G) [7] characterize the symmetry of a reference coordinate space (e.g. $E=R^{n}$) qualitatively endowed with a set of "allowed motions" (represented by G). The coordinate space just maps the "topographical space" with a distorted geometry (e.g. a Riemanian manifold V_{n}). In view of such a representation, further studies will focus on Euclidean spaces where $C_{\mathrm{m}}(\mathbf{u}, \mathbf{v})=1(f(p)$ has not to be determined).

5. Precision on the differential form of (\mathbb{E}) for infinite compact group G

The left-hand term of (\mathbb{E}) has been first defined as an integral over G^{4}. However, one now carefully analyzes the case of an infinite compact group G. Let Γ be the subset of G^{4} collecting the operations (g, h, k, l) such that $C_{g, h, k, l}(\mathbf{u}, \mathbf{u})$ is a priori defined (i.e. $C_{g, h, k, l}(\mathbf{u}, \mathbf{u}) \neq " \frac{0}{0}$ "). Since $G^{4}-\Gamma$ is negligeable in G^{4}, the differential form can be written down (for an Euclidean space $E: C_{\mathbf{m}}(\mathbf{u}, \mathbf{v})=1$):

$$
\begin{aligned}
& \Phi_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(d \sigma) \approx {\left[\int \int \int _ { G ^ { 4 } } \int \mu _ { \mathbf { u } , \mathbf { u } } (g) \mu _ { \mathbf { u } , \mathbf { u } } (h) \mu _ { \mathbf { u } , \mathbf { u } } (k) \mu _ { \mathbf { u } , \mathbf { u } } (l) \left[1+p C_{g, h, k, l}(\mathbf{u}, \mathbf{u}) d \sigma^{2}\right.\right.} \\
&\left.\left.+\dot{p}^{2} C_{g, h, k, l}^{2}(\mathbf{u}, \mathbf{u}) d \sigma^{4} / 2+\ldots\right] d g d h d k d l\right] / \\
& {\left[\iiint \int \mu_{\mathbf{u}, \mathbf{u}}(g) \mu_{\mathbf{u}, \mathbf{u}}(h) \mu_{\mathbf{u}, \mathbf{u}}(k) \mu_{\mathbf{u}, \mathbf{u}}(l) d g d h d k d l\right] } \\
& \approx 1+p A(\mathbf{u}) d \sigma^{2}+\ldots d \sigma^{4}+\ldots
\end{aligned}
$$

where

$$
A(\mathbf{u})=\frac{\iiint_{G^{4}} \int \mu_{\mathbf{u}, \mathbf{u}}(g) \mu_{\mathbf{u}, \mathbf{u}}(h) \mu_{\mathbf{u}, \mathbf{u}}(k) \mu_{\mathbf{u}, \mathbf{u}}(l) \frac{(g \mathbf{u}-h \mathbf{u} \mid k \mathbf{u}-l \mathbf{u})}{\|g \mathbf{u}-h \mathbf{u}\| \cdot\|k \mathbf{u}-l \mathbf{u}\|} d g d h d k d l}{\iiint \int \mu_{\mathbf{u}, \mathbf{u}}(g) \mu_{\mathbf{u}, \mathbf{u}}(h) \mu_{\mathbf{u}, \mathbf{u}}(k) \mu_{\mathbf{u}, \mathbf{u}}(l) d g d h d k d l}
$$

The coefficient $p A(\mathbf{u})$ of $d \sigma^{2}$ vanishes (given any value of the integrand, the permutation of g and h simply results in the change of the sign of the integrand). Therefore, no definition of $d \sigma^{2}$ is furnished. Instead, we get a formal definition of $d \sigma^{4}$, and this state of affairs has been partially discussed in the case $\mu_{\mathbf{u}, \mathbf{u}} \equiv 1$. In order to get a relevant definition of a linear element $d s^{2}$ related to $d \sigma^{2}$, the above formal derivation is not corrected on the basis the analysis of the finite case.

Let us consider the case of a finite group G, with a cardinality $\gamma=\#(G)$, acting isometrically on an Euclidean space.

For $g \neq k$ and $k \neq l$, the coefficient $C_{g, h, k, l}(\mathbf{u}, \mathbf{u})$ is a priori different from " $\frac{0}{0}$ ", and it can be identified with the corresponding term $C_{g, h, k, l}(\mathbf{u}, \mathbf{u}+d \mathbf{u})$ in the upper integral of $\Phi_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(d \sigma)$. This situation is refered to as the case " 0 ":

$$
\text { " } 0 \text { " - when } g \neq k \text { and } k \neq l\left(\gamma^{4}-2 \gamma^{3}-\gamma^{2} \text { terms among the } \gamma^{4} \text { terms in } G^{4}\right) .
$$

On the other hand, there are three cases in which $C_{g, h, k, l}(\mathbf{u}, \mathbf{u})$ is a priori not defined (i.e. $C_{g, h, k, l}(\mathbf{u}, \mathbf{u})={ }^{\prime} \frac{0}{0}$ '"):
" 1 " - when $g=h$ and $k \neq l\left(\gamma^{3}\right.$ terms among the γ^{4} terms in $\left.G^{4}\right)$,

$$
\begin{aligned}
& " 2 "-\text { when } g \neq h \text { and } k=l\left(\gamma^{3} \text { terms among the } \gamma^{4} \text { terms in } G^{4}\right), \\
& " 3 "-\text { when } g=h \text { and } k=l\left(\gamma^{2} \text { terms among the } \gamma^{4} \text { terms in } G^{4}\right) .
\end{aligned}
$$

In these cases, it is necessary to consider $d \mathbf{u} \neq 0$ and turn back to the complete expression $C_{g, h, k, l}(\mathbf{u}, \mathbf{u}+d \mathbf{u}) \neq C_{g, h, k, l}(\mathbf{u}, \mathbf{u})$.

Each situation $0,1,2$ or 3 corresponds to a set of four-fold operations (g, h, k, l) respectively denoted G_{0}, G_{1}, G_{2} and G_{3}.

Since G is finite, the upper or the lower integral occurring in $\Phi_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(d \sigma)$ is actually an arithmetic mean and can be replaced by a sum over G^{4} : this sum is split into four sums over the G_{i} 's, each of them being in turn expressed as mean integrals:

$$
\begin{aligned}
\frac{1}{\gamma^{4}} \sum_{G^{4}} \cdots & =\frac{1}{\gamma^{4}}\left\{\sum_{G_{0}} \cdots+\sum_{G_{1}} \cdots+\sum_{G_{2}} \cdots+\sum_{G_{3}} \cdots\right\} \\
& =\frac{1}{\gamma^{4}}\left\{\#\left(G_{0}\right) \int_{G_{0}} \cdots+\#\left(G_{1}\right) \int_{G_{1}} \cdots+\#\left(G_{2}\right) \int_{G_{2}} \cdots+\#\left(G_{3}\right) \int_{G_{3}} \cdots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\gamma^{4}}\left\{\left(\gamma^{4}-2 \gamma^{3}-\gamma^{2}\right) \int_{G_{0}} \ldots+\gamma^{3} \int_{G_{1}} \ldots+\gamma^{3} \int_{G_{2}} \ldots+\gamma^{2} \int_{G_{3}} \ldots\right\} \\
& =\left(1-\frac{2}{\gamma}-\frac{1}{\gamma^{2}}\right) \int_{G_{0}} \ldots+\frac{1}{\gamma} \int_{G_{1}} \ldots+\frac{1}{\gamma} \int_{G_{2}} \ldots+\frac{1}{\gamma^{2}} \int_{G_{3}} \ldots
\end{aligned}
$$

Therefore, the left-hand side of eq. (E) reads

$$
\begin{aligned}
& \Phi_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(d \sigma) \\
& \approx \frac{\int_{G_{4}} \mu_{\mathbf{u}, \mathbf{u}}(g) \mu_{\mathbf{u}, \mathbf{u}}(h) \mu_{\mathbf{u}, \mathbf{u}}(k) \mu_{\mathbf{u}, \mathbf{u}}(l) \exp \left[p C_{g, h, k, l}(\mathbf{u}, \mathbf{u}+d \mathbf{u}) d \sigma^{2}\right] d(g, h, k, l)}{\left[\int_{G} \mu_{\mathbf{u}, \mathbf{u}}(g) d g\right]^{4}} \\
&\left.\approx \frac{\int_{G_{4}} \mu_{\mathbf{u}, \mathbf{u}}(g) \mu_{\mathbf{u}, \mathbf{u}}(h) \mu_{\mathbf{u}, \mathbf{u}}(k) \mu_{\mathbf{u}, \mathbf{u}}(l)\left[1+p C_{g, h, k, l} l\right.}{}(\mathbf{u}, \mathbf{u}+d \mathbf{u}) d \sigma^{2}\right] d(g, h, k, l) \\
& {\left[\int_{G} \mu_{\mathbf{u}, \mathbf{u}}(g) d g\right]^{4} } \\
& \approx 1+p \frac{\left(1-\frac{2}{\gamma}-\frac{1}{\gamma^{2}}\right) \int_{G_{0}} d N_{0}+\frac{1}{\gamma} \int_{G_{1}} d N_{1}+\frac{1}{\gamma} \int_{G_{2}} d N_{2}+\frac{1}{\gamma^{2}} \int_{G_{3}} d N_{3}}{\left[\int_{G} \mu_{\mathbf{u}, \mathbf{u}}(g) d g\right]^{4}} d \sigma^{2}
\end{aligned}
$$

where

* $d N_{0}=\mu_{\mathbf{u}, \mathbf{u}}(g) \mu_{\mathbf{u}, \mathbf{u}}(h) \mu_{\mathbf{u}, \mathbf{u}}(k) \mu_{\mathbf{u}, \mathbf{u}}(l) C_{g, h, k, l}(\mathbf{u}, \underline{\mathbf{u}}) d g d h d k d l(g \neq h, k \neq l)$,
* $d N_{1}=\mu_{\mathbf{u}, \mathbf{u}}^{2}(g) \mu_{\mathbf{u}, \mathbf{u}}(k) \mu_{\mathbf{u}, \mathbf{u}}(l) C_{g, g, k, l}(\mathbf{u}, \underline{\mathbf{u}}+d \mathbf{u}) d g d k d l(g=h, k \neq l:$ formally, $d g$ here represents a measure "induced" by the "diagonal measure $d g^{2}$ " of G^{2} onto G_{1}).
* $d N_{2}=\mu_{\mathbf{u}, \mathbf{u}}(g) \mu_{\mathbf{u}, \mathbf{u}}(h) \mu_{\mathbf{u}, \mathbf{u}}^{2}(k) C_{g, h, k, k}(\mathbf{u}, \mathbf{u}+d \mathbf{u}) d g d h d k(g \neq h ; k=l ;$ formally, $d k$ here represents a measure "induced"' by the diagonal measure $d k^{2}$ of G^{2} onto G_{2}).
* $d N_{3}=\mu_{\mathbf{u}, \mathbf{u}}^{2}(g) \mu_{\mathbf{u}, \mathbf{u}}^{2}(k) C_{g, g, k, k}(\mathbf{u}, \mathbf{u}+d \mathbf{u}) d g d k(g=h ; k=l ; d g$ and $d k$ are formally defined as in $d N_{1}$ and $d N_{2}$).
All but one of the four upper integrals vanish. Indeed,
$\bullet \int_{G_{0}} d N_{0}=\iint_{G^{4}, g \neq h, k \neq l} \int_{\mathbf{u}, \mathbf{u}}(g) \mu_{\mathbf{u}, \mathbf{u}}(h) \mu_{\mathbf{u}, \mathbf{u}}(k) \mu_{\mathbf{u}, \mathbf{u}}(l) \frac{(g \mathbf{u}-h \mathbf{u} \mid k \mathbf{u}-l \mathbf{u})}{\|g \mathbf{u}-h \mathbf{u}\| \cdot\|k \mathbf{u}-l \mathbf{u}\|} d g d h d k d l=0$,
for the exchange of k and l (or g and h) in any value of the integrand affords the opposite value of the integrand.

$$
\begin{aligned}
\bullet \int_{G_{1}} d N_{1} & =\iiint_{G_{3}} \mu_{\mathbf{u}, \mathbf{u}}^{2}(g) \mu_{\mathbf{u}, \mathbf{u}}(k) \mu_{\mathbf{u}, \mathbf{u}}(l) \frac{(g \mathbf{u}-g(\mathbf{u}+d \mathbf{u}) \mid k \mathbf{u}-l \mathbf{u})}{\|g \mathbf{u}-g(\mathbf{u}+d \mathbf{u})\| \cdot\|k \mathbf{u}-l \mathbf{u}\|} d g d k d l=0 \\
& =\iiint_{G_{3}} \mu_{\mathbf{u}, \mathbf{u}}^{2}(g) \mu_{\mathbf{u}, \mathbf{u}}(k) \mu_{\mathbf{u}, \mathbf{u}}(l) \frac{(g d \mathbf{u} \mid k \mathbf{u}-l \mathbf{u})}{\|d \mathbf{u}\| \cdot\|k \mathbf{u}-l \mathbf{u}\|} d g^{2} d k d l=0
\end{aligned}
$$

for the exchange of k and l in any value of the integrand affords the opposite value of the integrand. Likewise, $\int_{G_{1}} d N_{2}=0$.

$$
\begin{aligned}
\bullet \int_{G_{3}} d N_{3} & =\iint_{G_{2}} \mu_{\mathbf{u}, \mathbf{u}}^{2}(g) \mu_{\mathbf{u}, \mathbf{u}}^{2}(k) \frac{(g \mathbf{u}-g(\mathbf{u}+d \mathbf{u}) \mid k \mathbf{u}-k(\mathbf{u}+d \mathbf{u}))}{\|g \mathbf{u}-g(\mathbf{u}+d \mathbf{u})\| \cdot\|k \mathbf{u}-k(\mathbf{u}+d \mathbf{u})\|} d g d k \\
& =\iint_{G_{2}} \mu_{\mathbf{u}, \mathbf{u}}^{2}(g) \mu_{\mathbf{u}, \mathbf{u}}^{2}(k) \frac{(g d \mathbf{u} \mid k d \mathbf{u})}{\|d \mathbf{u}\|^{2}} d g d k=\frac{\|d \mathbf{U}\|^{2}}{\|d \mathbf{u}\|^{2}} \geqslant 0
\end{aligned}
$$

where

$$
d \mathbf{U}=\int_{G} \mu_{\mathbf{u}, \mathbf{u}}^{2}(g)(g d \mathbf{u}) d g .
$$

In conclusion, if G is a finite group $(1 \leqslant \gamma<\infty$ and $d g=1 / \gamma)$:

$$
\Phi_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(d \sigma) \approx 1+p \frac{\frac{1}{\gamma^{2}} \int_{G_{3}} d N_{3}}{\left[\int_{G} \mu_{\mathbf{u}, \mathbf{u}}(g) d g\right]^{4}} d \sigma^{2} \approx 1+p B^{2}(\mathbf{u}, d \mathbf{u})\left[\frac{d \sigma}{\gamma}\right]^{2},
$$

where

$$
B^{2}(\mathbf{u}, d \mathbf{u})=\frac{1}{\left[\int_{G} \mu_{\mathrm{u}, \mathbf{u}}(g) d g\right]^{4}} \frac{\|d \mathbf{U}\|^{2}}{\|d \mathbf{u}\|^{2}}
$$

As it has already been underlined [8], it is clear that when $\gamma=\infty$, this derivation does not afford a definition of $d \sigma^{2}$. Nevertheless, it still defines the quantity: $d s=d \sigma / \gamma$, and the definition reads

$$
\Phi_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(\gamma d s) \approx 1+p B^{2}(\mathbf{u}, d \mathbf{u}) d s^{2} .
$$

Under this form (with $\Phi_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(\gamma d s)=K_{p}(\mathbf{u}, \mathbf{u}+d \mathbf{u})$), it furnishes a definition of $d s^{2}$ whatever is the finite or infinite group G considered.

The following definition of d_{p} and $d s$ are therefore suggested:

$$
\begin{aligned}
& \gamma d_{p}(\mathbf{u}, \mathbf{v})=D_{p}(\mathbf{u}, \mathbf{v}) \\
& \gamma d s=d \sigma=D_{p}(\mathbf{u}, \mathbf{u}+d \mathbf{u})
\end{aligned}
$$

where $\gamma=\# G$.
When G is a finite group, the results hitherto established for D_{p} and $d \sigma$ can be easily written down in terms of $d s$ and d_{p}, which become distance extensions of the starting distance d / γ instead of the equivalent distance d. This definition also brings a rigorous formulation of the singularity of $d \sigma^{2}$ on the unit representation space V_{1} contained in a larger representation space $V=V_{1} \oplus V_{2}$ of the group $\delta_{2} \approx\{e, \sigma\}$ (where: $\forall \mathbf{u} \in V_{2}, e \mathbf{u}=\mathbf{u}, \sigma \mathbf{u}=-\mathbf{u}$).

When G is an infinite group, (\mathbb{E}) is still a definition of $d s^{2}$. However, D_{p} can still be finite (e.g. if G is compact) and no definition of d_{p} is furnished.

If $\mu_{\mathbf{u}, \mathbf{u}}^{2}(g)=1$ for any operation g, then $\mathbf{U}=\int_{G}(g d \mathbf{u}) d g$: if there exists some operation g_{0} such that $g_{0} d \mathbf{u}=-d \mathbf{u}$, then $d \mathbf{U}=0$, and no definition of $d s^{2}$ is available. The situation formerly discussed for the infinite group $G=\mathcal{C}_{\infty}$ in R^{2} fulfills the latter condition and thus, a formal calculation of $d \sigma^{4}$ only remains possible [8].

If $B(\mathbf{u}, d \mathbf{u})$ does not vary with $d \mathbf{u}$, and if $B(\mathbf{u}, d \mathbf{u}) \neq 0$, then the equation provides a definition of a metric $d s^{2}$ in the classical sense of Riemannian manifolds. This problem will be discussed later.

6. Conclusion

The framework of the definition of completely G-invariant distance extensions is now generalized to the more general definition of G-weighted distance extensions. The formulation of the local version affording a definition of G-weighted metrics has been clarified. In particular, the borderline case of infinite compact groups is rigorously treated by the introduction of the related metric $d s^{2}=d \sigma^{2} / \gamma^{2}$, where $\gamma=\# G$. Everything seems to be at our disposal to search (at least formally) for an eventual connection with tools of physical mathematics. This challenge will come under a speculative interpretation of the wheighting symmetry function $\mu_{\mathbf{u}, \mathrm{v}}$ which is to be determined. This is undertaken in the next paper.

References and notes

[1] (a) R. Chauvin, J. Phys. Chem. 96 (1992) 4701; (b) 4706.
[2] R. Chauvin, Paper III of this series, J. Math. Chem. 16(1994) 269.
[3] R. Chauvin, Entropy in dissimilarity and chirality measures, submitted for publication.
[4] R. Chauvin, Paper II of this series, J. Math. Chem. 16 (1994) 257.
[5] D_{∞} is defined by: $\forall(\mathbf{u}, \mathbf{v}) \in E^{2}, D_{\infty}(\mathbf{u}, \mathbf{v})=\operatorname{Inf}_{g \in G, h \in G} d(g \mathbf{u}, h \mathbf{v})$.
[6] D_{0} is defined by: $\forall(\mathbf{u}, \mathbf{v}) \in E^{2}, D_{0}(\mathbf{u}, \mathbf{v})=1 /\left[\int_{G} d g / d(g \mathbf{u}, \mathbf{v})\right]$.
[7] R. Chauvin, Paper I of this series, J. Math. Chem. 16(1994) 245.
[8] R. Chauvin, Paper IV of this series, J. Math. Chem. 16(1994) 285.

